KEYRY: A Keyword-Based Search Engine over Relational Databases Based on a Hidden Markov Model

نویسندگان

  • Sonia Bergamaschi
  • Francesco Guerra
  • Silvia Rota
  • Yannis Velegrakis
چکیده

We propose the demonstration of KEYRY, a tool for translating keyword queries over structured data sources into queries in the native language of the data source. KEYRY does not assume any prior knowledge of the source contents. This allows it to be used in situations where traditional keyword search techniques over structured data that require such a knowledge cannot be applied, i.e., sources on the hidden web or those behind wrappers in integration systems. In KEYRY the search process is modeled as a Hidden Markov Model and the List Viterbi algorithm is applied to computing the top-k queries that better represent the intended meaning of a user keyword query. We demonstrate the tool’s capabilities, and we show how the tool is able to improve its behavior over time by exploiting implicit user feedback provided through the selection among the top-k solutions generated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hidden Markov Model Approach to Keyword-Based Search over Relational Databases

We present a novel method for translating keyword queries over relational databases into SQL queries with the same intended semantic meaning. In contrast to the majority of the existing keyword-based techniques, our approach does not require any a-priori knowledge of the data instance. It follows a probabilistic approach based on a Hidden Markov Model for computing the top-K best mappings of th...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Keyword Search in External Memory Graph

Keyword search over relational and XML data has grown in popularity since the advent of Web search engines. Keyword search over relational data is significantly different from web search as the required information is often split across multiple tables as a result of normalization. The algorithms and techniques that are applied to databases, thus produce answer trees from the data graph as oppo...

متن کامل

Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles

When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...

متن کامل

PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search over Relational Databases

Keyword search over relational databases makes it easier to retrieve information from structural data. One solution is to first represent the relational data as a graph, and then find the minimum Steiner tree containing all the keywords by traversing the graph. However, the existing work involves substantial costs even for those based on heuristic algorithms, as the minimum Steiner tree problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011